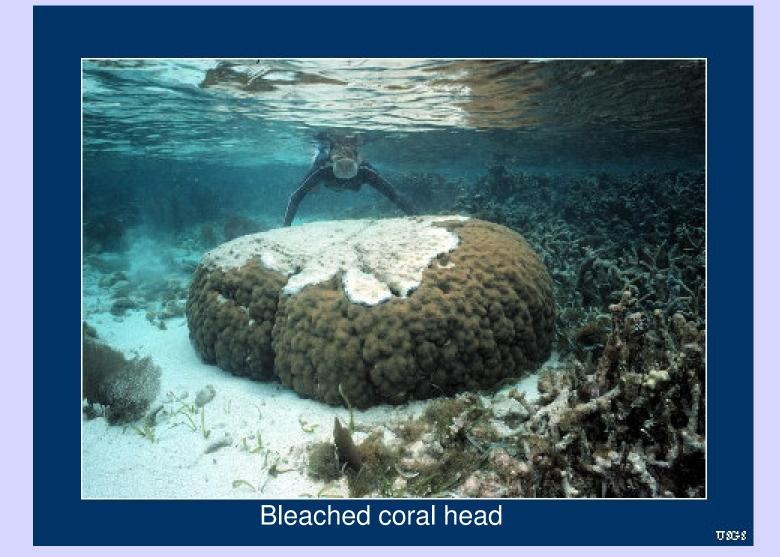


Coral Reef Genomics:

A Genome-wide Approach to the Study of Coral Symbiosis

Jodi Schwarz¹, Peter Brokstein¹, Cindy Lewis², Chitra Manohar³, Dave Nelson³, Carol Tang⁴, Alina Szmant⁵, Mary Alice Coffroth², Mónica Medina¹


¹Joint Genome Institute, ²SUNY Buffalo, ³Lawrence Livermore National Laboratory, ⁴California Academy of Sciences, ⁵University of North

INTRODUCTION Carolina Wilmington

Coral reefs are among the most beautiful and biodiverse ecosystems, upon which 500 million people depend for food, coastal protection, and other resources¹. At the heart of the reef ecosystem is a symbiosis between corals and endosymbiotic dinoflagellates (*Symbiodinium* spp.). The presence of the photosynthetic *Symbiodinium* within coral tissues promotes tight nutrient recycling, enhanced production of coral skeleton, and increased biomass, which in turn supports the reef. Yet coral reefs are threatened by the declining health of the marine environment: coral bleaching and coral disease are causing the world's reefs to suffer drastic declines in coral cover. In the Caribbean alone, the primary reef-building coral, *Acropora palmata* has suffered >80% decline over the past 30 years¹. We want to understand how this symbiosis is established, how it is maintained, and how it breaks down under conditions of environmental stress.

Brown spherical dinoflagellate symbionts within host tentacle

QUESTIONS

How do coral hosts and dinoflagellate symbionts establish and regulate the symbiosis?

- What genes or pathways are involved in the establishment of the symbiosis?
- Does the host initiate an immune response? Do the symbionts evade the response?
- How is gene expression affected by environmental conditions, symbiont strain, etc.

Montastraea faveolata

EXPERIMENTAL APPROACH

Experimentally initiate the symbiosis, sample RNA from each partner throughout the onset of symbiosis

Create libraries of expressed genes, design cDNA microarrays to identify symbiosis-related genes

Construct large-insert genomic BAC libraries to examine genomic context of symbiosis-related genes

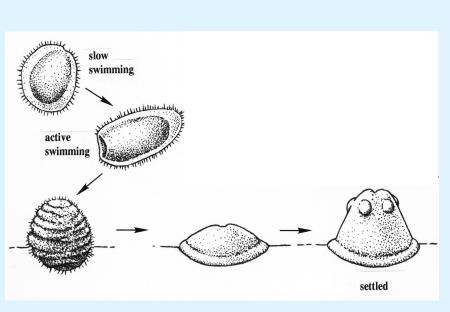
EDUCATION COMPONENT coordinated through CALIFORNIA ACADEMY OF SCIENCES

♦ Master's student developing a coral-related curriculum lending kit for schools coral symbiosis

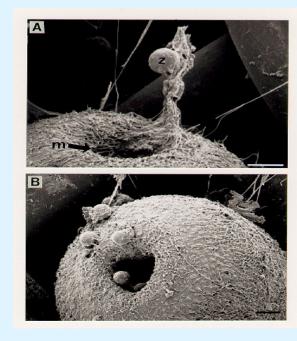
◆ Careers in Science program: development of a hands-on coral reef demonstration for public use at the museum

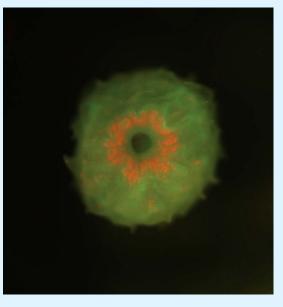
♦ Docent Program: docent education on

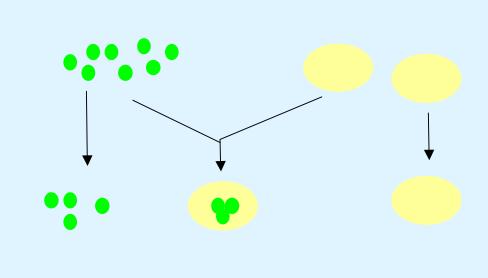
Field collections and experiments

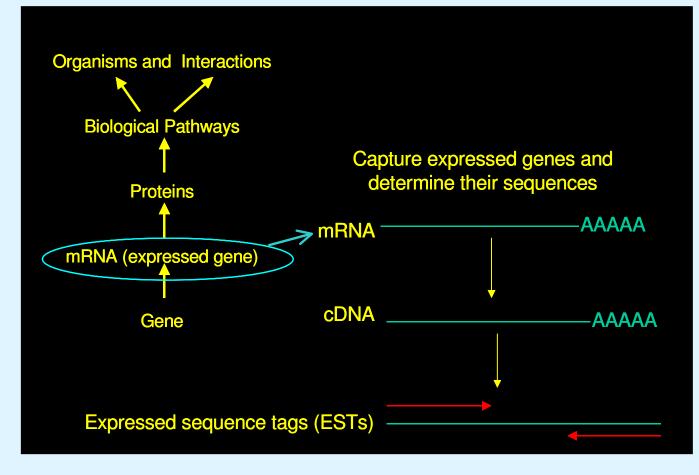

Corals release pink egg/sperm bundles

Mesh nets capture egg/sperm


Eggs / sperm stocks established for fertilization experiments


Fertilized eggs develop into larvae, and metamorphose into polyps


Cultures of *Symbiodinium* strains used for experimental infections


symbionts enter host gastric cavity (photo of Fungia scutaria)

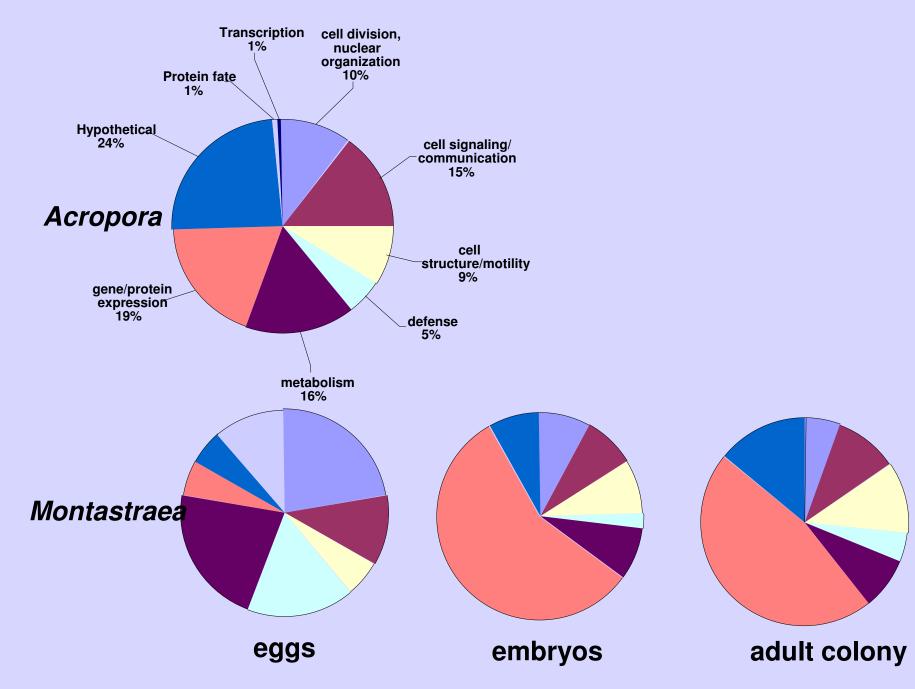
Acropora palmata larva (green) infected with Symbiodinium (red)

Sampling methods: Experimentally infect larvae with *Symbiodinium* and collect samples of the symbiotic partners and non-symbiotic partners throughout the infection process

Extract RNA from all samples for construction of cDNA libraries

cDNA library construction and EST Sequencing

- 1. Sample genes from both hosts from as many stages of symbiosis as possible
- 2. Sequence a portion of each library to identify some of the genes expressed at each stage
- 3. 16 libraries will be constructed, representing both partners in the non-symbiotic and


symbi	otic conditions for two coral species and their domination	ant strains of <i>Syn</i>	nbiodinium			
Symbiosis		Number of ESTs				
Status	Source of RNA	M. faveolata	A. palmata			
NS	Coral Eggs	1536	3840			
NS	Coral Embryos	1536	1536			
NS	Coral Larvae	1536	1536			
S	Coral Larvae	1536	1536			
S	Coral adult colony	2304	In progress			
NS	Symbiodinium grown in culture	In progress	In progress			
S	Symbiodinium isolated from larvae	In progress	In progress			
S	Native Symbiodinium isolated from adult colony	In progress	In progress			
Total ESTs = 16896						
NS= Nonsymbiotic, S= symbiotic						

Status of library construction and EST sequencing for the planned target stages for both host species and symbiont strains

Annotation of ESTs

Obtain information about the potential functions of genes

- 1. Gene identity as deduced from BLAST searches
- 2. Grouping of genes into larger-order biological processes

Comparison of larger-order biological processes between 4 cDNA libraries from two species and 3 developmental stages

Microarray design and experiments

Identify symbiosis-related genes by comparing gene expression patterns prior to and throughout the onse and maturation of the symbiosis

- 1. Select cDNAs to include in microarrays based on functional information obtained from EST annotation
- 2. Probe the microarrays with RNA samples at various timepoints of the symbiosis
- 3. Identify the relative expression of genes at different stages

	Fold Change	Best Blast hit Gene Identity	Organism	Accession #	E-value	Score
Up in adults	22.48	beta actin	Aiptasia pulchella	AAQ62633.1	1x10 ⁻¹³	73.9
	15.94	catalase	Drosophila melanogaster	NP_536731.1	1x10 ⁻¹⁴	81.3
	15.77	Tubulin alpha chain	Gallus gallus	P02552	1x10 ⁻⁸⁵	315
	12.92	ubiquitin/ribosomal protein S27a fusion protein	Branchiostoma belcheri tsingtaunese	AAL55470.1	1x10 ⁻⁶⁰	231
	9.03	histone H4	Styela plicata	JN0688	1x10 ⁻⁴²	172
	7.67	vitellogenin	Pseudocentrotus depressus	AAK57983	1x10 ⁻¹²	74
	4.34	dynein	Rattus norvegicus	NP_062099.2	1x10 ⁻⁸⁵	317
	2.43	ankyrin 1	Homo sapiens	B35049	1x10 ⁻⁴²	175
	1.88	no hit				
Up in eggs	2.76	protein tyrosine phosphatase type IVA	Homo sapiens	NP_003454.1	1x10 ⁻⁵⁵	216
	2.66	no hit				
	2.54	chromatin-binding protein (<i>Drosophila</i> HP1 beta)	Danio rerio	NP_956040	1x10 ⁻¹²	71.2
	2.45	estrogen receptor binding protein	Homo sapiens	AAQ95169	1x10 ⁻³³	142
	2.34	no hit				

Relative gene expression levels in *M. faveolata* eggs vs. adult corals (p<0.1)